

PII: S0040-4039(96)01052-0

Method for Synthesis of 12H-pyrido[1,2-a:3,4-b']diindoles. Total Synthesis of Homofascaplysin C.

Sergey V. Dubovitskii

Chemistry Department, Far Eastern State University, 690600, Vladivostok, Octyabrskaya St. 27, RUSSIA.

Abstract. An efficient synthesis of a 12H-pyrido[1,2-a:3,4-b']diindole system is proposed. 3-Methylindole has been converted into homofascaplysin C by a four reaction sequence in which the last step is dehydrogenation and oxidation of the methyl- to formyl group at the same time. Copyright © 1996 Elsevier Science Ltd

The first natural 12H-pyrido[1,2-a:3,4-b]diindole was the fascaplysin, which has anti-microbial activity and is cytotoxic against L-1210 mouse leukemia.¹ And later homofascaplysins A, B, C and secofascaplysin A were discovered in the Fijian sponge F. reticulata.²

All previous synthetic work relating to these natural products includes the preparation of pyrido-[1,2-a]indole fragment as a late step³ or by heteroring cross-coupling and cyclisation.⁴

I now describe a short and efficient synthesis of a 12H-pyrido[1,2-a:3,4-b']diindole system and a total synthesis of homofascaplysin C (four steps) starting from 3-methylindole.

4-(3-Methyl-1H-indol-1-yl)butanoic acid (1) and 6,7,8,9-tetrahydro,10-methylpyrido[1,2-a]indol-9-one(2) were prepared using Jirkovsky's method.⁵ Treatment of the pyrido[1,2-a]indole (2) with phenylhydrazine hydrochloride in refluxing acetic acid gave 6,7-dihydro-13-methyl-12H-pyrido[1,2-a:3,4-b']diindole(3) in 91% yield.⁶ This route, which depends upon the easy availability of the 3-R-indoles, would appear to have application to the relatively simple synthesis of several other pyrido[1,2-a:3,4-b']diindoles.

Compound (3) underwent oxidative dehydrogenation and oxidation of methyl group to formyl group by 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) (3 mol, dioxane, reflux, 2 h) to give a homofascaplysin C(4) in

one step. The 50% yield for this stage has not been optimized. The main physical data (IR, ¹H-NMR, MS) of 4 are identical to those of the natural product.

Acknowledgments. I cordially thank Professor Vladimir A. Kaminskii and Professor Vladimir I. Visotskii for their keen interest and encouragement. The author is grateful to George Soros Foundation for partial financial support.

References and notes.

- 1. Roll, D.M.; Ireland, C.M.; Lu, H.S.M.; Clardy, J. J. Org. Chem., 1988, 53, 3276-3278.
- 2. Jemenez, C.; Quinoa, E.; Adamczeski, M.; Hunter, L.M.; Crews, P. J. Org. Chem., 1991, 56, 3403-3410.
- a) Harley-Mason, J.; Waterfield, W.R. Chem. Ind. (London) 1960, 1478. b) Gribble, G.W.; Pelcman, B. J.Org. Chem. 1992, 57, 3636-3642. c) Molina, P.; Fresneda, P.M.; Garciazafra, S.; Almendros, P. Tetrahedron Lett. 1994, 35, 8851-8854.
- 4. Rocca, P.; Marsais, F.; Godard, A.; Queguiner, G. Tetrahedron Lett. 1993, 34, 7917-7918.
- 5. Jirkovsky, I.; Sontroch, G.; Bandy, R.; Oshiro, G. J. Med. Chem. 1987, 30, 388-394.
- 6. Selected spectral data for compound $\underline{3}$: IR(nujol): 3410 cm (NH); ¹H-NMR (250 MHz, CDCl₃): δ 8.34 (s, 1H), 7.57 (d, 1H), 7.54 (d, 1H), 7.43 (d, 1H), 7.30 (d, 1H) 7.15-7.25 (m, 3H), 7.10 (t, 1H), 4.27 (t, 2H), 3.24 (t, 2H), 2.61 (s, 3H); MS m/z 272 (M⁺).

(Received in UK 22 April 1996; revised 28 May 1996; accepted 31 May 1996)